Основные устройства автомобильного кондиционера и организация циркуляции воздушных потоков

Под термином кондиционирование воздуха подразумевается создание и автоматическое поддерживание необходимых кондиций воздушной среды в помещении или сооружении. В общем случае понятие «кондиция воздуха» включает в себя следующие его параметры: температуру влажность, скорость движения, чистоту, содержание запахов, давление, газовый состав и ионный состав.

В зависимости от назначения обслуживаемого объекта выбирают требуемые кондиции воздушной среды, наиболее важные для конкретных условий применения.

Как правило, для обычных объектов промышленного и гражданского строительства требуемые кондиции воздушной среды ограничиваются только частью перечисленных параметров.

Кондиционирование воздуха обеспечивается применением специальных систем. Под термином системы кондиционирования воздуха (СКВ) подразумевается комплекс устройств, предназначенных для создания и автоматического поддержания в обслуживаемых помещениях заданных величин параметров воздушной среды.

Указанный комплекс может включать в себя следующие шесть составных частей:

1) установку кондиционирования воздуха (УКВ), обеспечивающую необходимые

2) кондиции воздушной среды по тепловлажностным качествам, чистоте, газовому составу и наличию запахов;

3) средства автоматического регулирования и контроля за приготовлением воздуха нужных кондиций в УКВ, а также поддержания в обслуживаемом помещении или сооружении постоянства заданных величин параметров воздуха;

4) устройств для транспортирования и распределения кондиционированного воздуха;

5) устройств для транспортирования и удаления избытков внутреннего воздуха;

6) устройств для глушения шума, вызываемого работой элементов СКВ;

7) устройства для приготовления и транспортирования источников энергии (электрического тока, холодной и теплой сред), необходимых для работы аппаратов в СКВ. В зависимости от конкретных условий некоторые составные части СКВ могут отсутствовать.

Классификацию СКВ можно провести по следующим пяти признакам: назначению, характеру связи с обслуживаемым помещением, способу снабжения холодом, схеме обработки воздуха в УКВ и величине давления, развиваемого вентиляторами.

По назначению СКВ можно подразделить на три вида: технологические, технологически комфортные и комфортные.

Автомобильные СКВ являются комфортными, они должны обеспечить наиболее благоприятные условия для водителя.

Работоспособность и самочувствие человека в значительной мере определяются тепловым балансом его организма и наиболее оптимальны в условиях окружающей воздушной среды на уровне теплового комфорта.

Автомобиль – это дом на колесах. Многие из нас проводят здесь немалую часть жизни. Свежий чистый воздух, тепло или прохлада – необходимые элементы комфорта, без которых любая поездка превратится в мучение.

Отапливать салон долгое время считалось роскошью. Лучшим решением оказался водяной отопитель (радиатор с вентилятором), подключенный параллельно системе жидкостного охлаждения двигателя.

Интенсивность обогрева регулировалась краном подачи горячей воды и воздухозаборным лючком перед ветровым стеклом. Постепенно водяные отопители вошли в широкий обиход. Эти печки не только обогревали ноги водителя и сидевшего рядом пассажира, но и служили «дефростером» (размораживателем) ветрового стекла.

 

 

...

Это интересно!

Иногда отопители использовались с прямо противоположной целью. В свое время – в 50‑60‑е годы – в России были очень популярны шоссейные гонки на легковых автомобилях. Трассой, как правило, служили прямые участки дорог длиной 100–200 километров. Повышенный тепловой режим форсированных моторов заставлял гонщиков искать дополнительные способы охлаждения. И когда в середине дистанции температура воды начинала «ползти за сотню», приходилось включать печку – работающий «на полную катушку» отопитель помогал спасти радиатор от закипания. Сегодня некоторые автовладельцы при «закипании» воды в гидроконтуре охлаждения используют тот же «дедовский» метод.

 

Блок‑связка «водяной отопитель – вентилятор» многие десятилетия выступала в роли основной климатической установки в автомобиле. Постепенно совершенствовались системы регулирования температуры, смешивания и распределения горячего и холодного воздуха. Появились автомобили, где тепло подавалось в зону под задними сиденьями, приятно согревая ноги пассажиров.

Дальнейшие технические усовершенствования позволили горячий воздух направлять по низу салона (к ногам), теплый – примерно посередине (на уровень пояса и груди), а холодный – наверх (к лицу).

Трехслойное – по высоте – распределение теплого воздуха привело к значительному усложнению приборов управления отопителя. Запросы потребителей с каждым годом становились все разнообразнее и изощреннее. Поэтому сейчас во многих новых моделях водитель и пассажиры могут независимо, каждый по своему вкусу, регулировать температуру потока воздуха и некоторые другие характеристики.

С приходом минивэнов, у которых в салоне трехрядные сиденья, пришлось создать еще более сложные системы отопления и вентиляции. На некоторых моделях минивэнов теплый (или холодный) воздух поступает к заднему ряду кресел. На отдельных моделях среднего и высшего классов предусмотрена подача подогретого воздуха на стекла передних дверей через воздуховоды с резиновыми гармошками – такой обогрев стал необходимостью: в холодное время через запотевшие окна передних дверей не видны наружные зеркала заднего вида.

Да и сами отопители стали мощней – их вентиляторы уже стали оснащать трех‑, пяти– и многоступенчатыми регуляторами скорости. А сам вентилятор год от года делался все более производительным. В жаркое время, особенно если в машине, кроме водителя, есть и пассажиры, необходим интенсивный обмен воздуха. Если в 50‑е годы вентилятор в лучшем случае (и только на таких дорогих автомобилях, как «Роллс‑Ройс» или «Ягуар») «прогонял» через салон 150–180 кубометров воздуха в час, то сейчас этот показатель вырос в 2,5–3 раза!

Тем не менее в зоне магистралей, поскольку транспортный поток стал намного интенсивней, резко возросла загазованность вредными выбросами, копотью, резиновой пылью, и в результате потребовалась фильтрация поступающего в салон воздуха. Такой фильтр, улавливающий почти 100 % взвешенных в воздухе частиц размером не менее пяти микрон и задерживающий даже некоторые газообразные примеси, размещается после воздухоприемной решетки у основания ветрового стекла. Фильтрующий вкладыш надо менять примерно раз в год или после пробега в 15 000 км.

Иногда есть смысл полностью изолировать салон автомобиля от наружной атмосферы (в дорожных пробках, туннелях, при движении за дизельным автопоездом и в иных случаях).

Поскольку поворотных форточек в дверях уже давно нет, дверные уплотнители очень надежны, а щелей и сквозных отверстий в кузове практически нет, то добиться герметичности салона вполне реально. Вентилятор будет «гонять» в закрытом внутреннем пространстве машины один и тот же объем воздуха – рециркулировать его.

Конечно, долгое время сохранять такой режим не удастся – кислород из воздуха постепенно «выдышат». Но как временный выход из положения рециркуляция нужна и полезна.

Хорошую климатическую установку, то есть эффективный отопитель и вентилятор, все чаще оснащают управляющей автоматикой: компьютер, ориентируясь на заданную водителем температуру в салоне, будет считывать показания датчиков вне кузова и внутри и отдавать команды кранам, электромоторам, заслонкам и другим устройствам, тем самым постоянно поддерживая необходимый температурный режим.

На сегодняшний день автоматическим климат‑контролем оборудованы многие модели, включая и малолитражные.

Но климат‑контроль должен уметь не только повышать, но, если нужно, и понижать температуру в автомобиле. Установить же в салоне более прохладную и менее влажную «погоду», чем за окном, можно только с помощью кондиционера.

Этим сложным агрегатом машины, как правило, комплектуются на заводе‑изготовителе по заказу покупателя, причем за дополнительную плату. Монтаж непосредственно у дилера обойдется в 1,5–2 раза дороже, чем на конвейере.

В системе кондиционирования воздуха по замкнутому контуру трубопроводов компрессор (рис. 1.3) «гоняет» хладоноситель (хладагент) – газообразное вещество («фреон» или R134‑a), которое циклически переходит в жидкую фазу и наоборот, – при этом оно периодически охлаждается и «отнимает» тепло у воздуха, поступающего в салон.

На рис. 1.4 представлен пульт управления климатической установкой (БМВ 3‑й серии). На дисплее – температура за бортом автомобиля и в салоне. Кнопки слева – три уровня подачи воздуха. Левая нижняя – автоматический режим климатизации. Вторая снизу кнопка в правом ряду включает рециркуляцию воздуха.

 

Рис. 1.3. Внешний вид компрессора вблизи

 

Рис. 1.4. Пульт управления климатической установкой (БМВ 3‑й серии)

На рис. 1.5 представлен аналогичный по функционалу пульт управления климат‑контролем автомобиля Kia Sportage 4 WD. Компрессор, конденсатор с вентилятором, осушитель, климатический блок с теплообменником и управляющими приборами занимают довольно значительный объем. Узлы климатической установки уже не могут размещаться под панелью приборов, как бывало прежде. Элементы конденсатора стали располагать в моторном отсеке, как и блок отопитель‑вентилятор с фильтром. Только функции управления сосредоточены по‑прежнему на панели приборов.

 

Рис. 1.5. Пульт управления климат‑контролем автомобиля Kia Sportage 4 WD

В целом же вся климатическая установка, в которой системы вентиляции, отопления, фильтрации воздуха, кондиционер и управляющая автоматика являются составляющими элементами, может применяться на легковых автомобилях любого класса. Кондиционирование воздуха – это регулирование температуры, влажности, очищение и циркулирование воздуха. Аналогично кондиционирование автомобиля – это не просто искусственное охлаждение воздуха, но и создание комфортности для водителя и пассажиров путем поддержания микроклимата внутри салона, удаления влаги, пыли и загрязненного воздуха.

 

 

...

Это интересно!

При смазывании спиртом кожи можно почувствовать прохладу, это связано с тем, что спирт, испаряясь с поверхности кожи, отнимает тепло. Аналогичным образом прохлада, возникающая при разбрызгивании воды во дворе летом, объясняется испарением скрытого тепла, отнимаемого у воздуха над поверхностью земли.

 

Говорят, что в старину в Индии воду в глиняном чане для охлаждения на ночь ставили наружу. Это можно объяснить тем, что наружный воздух, соприкасаясь с поверхностью чана, отнимает скрытое тепло у воды, понемногу испаряющейся в результате прохождения через многочисленные отверстия поверхности чана, и делает воду чана холодной. Если привести в порядок изложенное, то действие системы кондиционирования опирается на три следующих физических закона:

1) тепло всегда перемещается из физического тела с высокой температурой в физическое тело с низкой температурой. Тепло является одним из видов энергии, а температура – одной из единиц измерения величины энергии;

2) для превращения жидкости в газообразное состояние необходимо тепло. Например, при испарении воды кипячением горелкой происходит большое поглощение количества тепла, и температура воды не изменяется, наоборот, если у газообразного вещества забирать тепло, то оно превращается в жидкость. Температура, при которой кипит вода и получается водяной пар, связана с давлением. Точка кипения повышается с повышением давления;

3) если сжать газ, то температура и давление газа возрастают. Например, если в дизельном двигателе поршень движется вверх‑вниз, температура воздуха поднимается из‑за сжатия. При этом если в цилиндр впрыскивается топливо, то немедленно произойдет взрыв смеси.

Если вышеуказанные законы применять относительно к основному циклу охлаждения, то это выглядит следующим образом.

Хладагент в жидком состоянии, превращаясь в газообразное, поглощает из атмосферы тепло (законы 1 и 2). Высокотемпературный газ, сжимаясь, достигает высокой температуры, немного большей, чем температура окружающего воздуха (закон 3). Окружающий воздух (температура ниже, чем температура газа в системе), поглощая тепло, превращает газ в жидкость (законы 1 и 2).

Таким образом, жидкость, возвращаясь к начальной точке цикла, используется вновь.

1.2.1. Способы замораживания воздуха в системе кондиционирования

Для получения низкой температуры достаточно отнять «скрытое» тепло испаряющегося вещества, которое осуществляется двумя способами.

Первый способ – это использование спирта или воды и отнятие «скрытого» тепла испарения из окружающих веществ.

Второй способ – это замораживание с использованием хладагента, а также химических и механических установок.

Если представить, что сейчас двор поливается вместо воды веществом, обладающим большим «скрытым» теплом, то можно почувствовать не только прохладу, но и холод. Хотя подобным способом можно получить низкую температуру, однако с целью безопасности и экономичности эксплуатации создан специальный аппарат, называемый холодильной установкой.

К слову, с помощью автомобильного кондиционера удалось заморозить воду в банке до формы самой банки (см. рис. 1.6).

 

Рис. 1.6. Наглядная иллюстрация возможностей автомобильного кондиционера 1.2.2. Как работает кондиционер

Хладагент циркулирует линии закрытого контура и его составляющих частей. Подобные циклы хладагент вынужден непрерывно повторять, и это называется циклом хладагента. Явление, возникающее в зависимости от циркулирования хладагента в пределах цикла, связано с изменением каждого значения давления и температуры при превращении хладагента в газ и конденсации вновь в жидкость.

Система охлаждения опирается на несколько неизменных физических законов. Подобные законы вытекают из обсуждения о том, какие явления вызывает хладагент при работе системы охлаждения.

Газ хладагент всасывается и сжимается компрессором до высоких температуры и давления (80 °C, 15 кг/см2) и затем выпускается. Хладагент, выпущенный из компрессора, поступает на конденсатор и принудительно охлаждается вентилятором системы охлаждения, при этом отдавая «скрытое» тепло конденсации воздуху, проходящему через конденсатор, превращается в жидкость. Температура при этом составляет около +50 °C.

Превращенный в жидкость хладагент после удаления влаги и пыли в приемнике‑осушителе поступает на расширительный клапан.

Жидкий хладагент высокого давления в расширительном клапане, резко расширяясь, превращается в хладагент туманообразного состояния с низкими температурой и давлением (‑2 °C, 2,0 кг/см2), такой хладагент далее течет на испаритель (см. рис. 1.7).

Хладагент в туманообразном состоянии, войдя в испаритель и проходя через вентилятор, отнимая «скрытое» тепло испарения у сжатого воздуха, охлаждает воздух в окрестности. Одновременно с охлаждением из туманообразного превращается в газообразное состояние и всасывается компрессором для повторного цикла.

Подобным образом хладагент, повторяя кругооборот по циклу, осуществляет охлаждение. В общем, для превращения газа в жидкость достаточно нагнетать давление, но для облегчения превращения в жидкость одновременно с нагнетанием давления и охлаждают. Для этого в современных холодильных установках необходимы компрессор и конденсатор.

 

1.2.3. Цикл охлаждения или особенности хладагентов

Хладагент является легко летучим веществом, играющим роль передатчика тепла при циркуляции внутри контура охлаждающей системы. Имеются несколько видов хладагента, а во фреоновом ряду имеются: R‑ll, R‑12, R‑14, R‑21, R‑22. Из них в автомобилях применяется фреон R‑12 и R134.

 

 

...

Внимание, важно!  

Объяснимой причиной невозможности использования в автомобилях других хладагентов фреонового ряда являются следующие особенности:

• R‑11: если превысить точку кипения 23,77 °C, то хорошо распространяется в смазочных маслах. Поэтому используют как очищающее средство системы А/С автомобиля;

• R‑14: точка температуры превращения газа в жидкость ‑45,5 °C, которая очень низка;

• R‑21: ядовита и высока точка кипения;

• R‑22: имеет свойства растворения резины, нельзя использовать прокладки из резины.

 

 

Рис. 1.7. Иллюстрация схемы течения хладагента по коммуникациям

Особенности фреонового газа R‑134A, используемого в автомобилях, следующие: 1) велика «скрытая» теплота испарения и легко превращается в жидкость;

2) не горит и не взрывается;

3) химически устойчив и не меняется;

4) не ядовит, нет свойства окисления;

5) не портит продукты питания и одежду;

6) легко приобрести.

Согласно Международному монреальскому протоколу, объектами по ограничению применения веществ, разрушающих озонные слои, было принято 5 веществ фреонового ряда: R‑ll, R‑12, R‑113, R‑114, R‑115.

Хотя по срокам с января 1996 года действует полное запрещение производства и применения веществ, разрушающих озоновые слои. Именно поэтому все современные автомобили заправляют более безопасным фреоном R134A.

Исследования этого газа показали, что неразложившийся фреон при достижении слоев стратосферы в большом количестве выделяется в тропосферу Земного шара и разрушает озоновые слои, разлагаясь под влиянием сильных ультрафиолетовых лучей из космоса, применение хладагента автомобильного кондиционера стало ограниченным.

1.2.4. Компрессорное масло в системе смазки кондиционирования воздуха

Из масел применяется полиалкиленовое – гликолевое масло (PAG) с хладагентом (R‑134a) и минеральное – ранее – с R‑12.

В автомобилях с современным хладагентом R‑134a в качестве смазки уплотнительного кольца при работе в соединительных частях применяется компрессорное масло со спецификацией, используемой в устаревших хладагентах (R‑12).

При работе главной магистрали и магистралей требуется осторожность, так как во время смазывания компрессорным маслом основного хладагента (R‑134a) на уплотнительном кольце возникает явление гидрогенизации.

При работе на главной магистрали и магистралях требуется осторожность, так как при сопоставлении поглощаемости компрессорного масла хладагента (R‑134a) при прочих равных условиях ее значение примерно в 180 раз выше, чем у компрессорного масла ранее применяемого хладагента. При компрессорном масле у автомобилей с новым хладагентом (R‑134a) объем заправки таков же, что у автомобилей со старым хладагентом (R‑12).

Из‑за быстрого развития компрессоров, разработок облегченных малых компрессоров и применения новых видов хладагента еще сильнее повышаются требования к роли охлаждающего масла. Роль охлаждающего масла важна как звено способа для обеспечения длительной безопасности системы кондиционирования и стойкости к более высокой и низкой температурам.

Если посмотреть роль охлаждающей жидкости в системе, то в компрессоре участок выходного клапана является наиболее высокотемпературным местом. На этом участке образуется углерод, и нельзя допустить его наслоения.

Наибольшее количество масла, входящее в систему хладагента, вместе с жидким хладагентом должно поддерживать жидкое состояние, чтобы не препятствовать теплообмену или течению от затвердения на стенах конденсатора. Трубопровод равного давления и расширительный клапан, масло не должны содержать твердых веществ, мешающих расширению, а также создавать подобных веществ.

Во время охлаждающего цикла масла в испарителе, являющемся наиболее низкотемпературной частью, не должен создавать кристаллических осадков. Кроме того, масло не должно содержать влагу и затвердевать. При возникновении подобных явлений они прерывают течение хладагента и уменьшают эффективность охлаждения.

Охлаждающее масло должно иметь специфические особенности, которых не имеют обычные смазывающие масла. Хотя обычное смазывающее масло в основном должно отвечать только требованиям по смазывающей характеристике, а охлаждающее масло должно быть таким, чтобы при смешивании с хладагентом и низкой температуре не затвердевать, при высокой не окисляться, не вступать в химическую реакцию с хладагентом, не вызывать аварии, вступая в реакцию с используемым в оборудовании материалом.

В качестве одного из способов оценки стабильности охлаждающего масла проводят испытание в герметизированной жаростойкой стеклянной испытательной трубке, поместив в нее реально применяемый в компрессоре хладагент (R‑12), металл (Fe, Си, А1) и масло. При испытании на герметизированной трубке используют масло 0,5 мл, хладагент R‑12 0,5 мл. Положив в качестве катализатора медь и железо, нагревают с температуры 175 °C в течение 14 дней, измеряют количество R‑12, разложенного из R‑12.

Охлаждающее масло соприкасается с хладагентом при низкой температуре. Мало того, что желательно совместное сосуществование с хладагентом при низкой температуре, необходимо еще, чтобы оно не разлагало воск на воскообразные отложения.

Охлаждающее масло даже при низкой температуре не затвердевает, то есть имеет низкую температуру текучести и одновременно трудно разлагает осадки, и чем меньше разложение, тем предпочтительнее.

При чрезмерном рафинировании охлаждающего масла резко уменьшаются ароматические компоненты. Хотя среди ароматических компонентов вещества с плохой химической стабильностью, но если ароматические компоненты чистые, то возникает активное влияние этих компонентов на стабильность к окислению и предельное давление. Поэтому есть необходимость применения ручного способа рафинирования для сохранения указанных эффективных элементов. Таким образом, нужно выбирать масло с хорошим смазывающим свойством, чтобы даже при применении в реальной машине не возникало плавления.

1.2.5. Особые явления и их проявления

В фреоновых охлаждающих установках при запуске компрессора давление в картере резко падает, и хладагент, растворяемый в масле, начинает резко испаряться, поверхность масла начинает бурлить, возникает пена. Если это явление будет продолжаться длительное время, то из‑за нарушения смазки трущихся частей может заклинить компрессор и сгореть.

При проникновении с всасывающей стороны компрессора или различных других путей большого количества масла в цилиндр из‑за сжатия несжимаемого масла возникает опасность повреждения тарелки седла клапана. Кроме того, образуется недостаточность масла в картере, так как большое количество масла перейдет в различные части установки. Недостаточность масла становится причиной заклинивания компрессора.

Явление медного покрытия – когда в охлаждающих установках, применяющих хладагент фреоновой системы, медь, растворившись в масле, вместе с хладагентом циркулирует в установке, затем вновь оседает на поверхности металла и покрывает его, при этом:

• уменьшается активная часть зазора, компрессор заклинивает и становится неработоспособным;

• в установке либо много влаги, либо чем выше температура, тем легче влага появляется в цилиндре и на тарелке клапана.

Чем больше содержится молекул водорода R‑22, по сравнению с R‑12 и R‑30 по сравнению с R‑22, и чем больше элементов МАХ, тем сильнее это явление.

1.2.6. Составные части системы кондиционирования воздуха в автомобиле

На рис. 1.8 представлена блок‑схема системы кондиционирования воздуха в автомобиле Kia Sportage 4 WD.

 

Рис. 1.8. Блок‑схема системы кондиционирования воздуха в автомобиле Kia Sportage 4 WD

На рис. 1.9 приведены основные функциональные части этой системы. Разберем их по порядку. Компрессор вращается от передачи муфты компрессора вращающегося момента шкивом коленчатого вала через приводной ремень. Если на магнитную муфту не подается напряжение, то вращается только сам шкив муфты компрессора и не вращается вал компрессора.

При подаче напряжения на магнитную муфту диск и втулка муфты перемещаются назад и соединяются со шкивом. Шкив и диск под действием сил становятся едиными и приводят во вращение вал компрессора.

 

Рис. 1.9. Основные функциональные части: 1 – испаритель; 2 – компрессор; 3 – ресивер; 4 – конденсатор

Компрессор в зависимости от вращающегося его вала превращает газообразное состояние хладагента низкого давления, идущего от испарителя, в газ высокой температуры и высокого давления. Масло, перемещающееся вместе с хладагентом, играет роль смазки.

Поршень при вращении вала компрессора приводится в движение эксцентриком, в зависимости от давления выпускает соответствующее количество газа изменением хода поршня и угла поворота и перемещающегося диска.

Конденсатор устанавливается перед радиатором и выполняет функцию превращения газообразного высокотемпературного хладагента, идущего от компрессора, в жидкое состояние выделением тепла в атмосферу. Количество выделяемого хладагентом тепла в конденсаторе определяется количеством поглощенного испарителем тепла извне и работой компрессора, необходимой для сжатия газа.

Для конденсатора результат теплоотдачи прямо влияет на эффект охлаждения холодильной установки, поэтому обычно он устанавливается на самой передней части автомобиля и принудительно охлаждается воздухом вентилятора системы охлаждения двигателя и потоком воздуха, возникающим при движении автомобиля.

Хладагент, прошедший через расширительный клапан, став легкоиспаряющимся с низким давлением, при прохождении в туманообразном состоянии через патрубок испарителя, под действием потока воздуха от вентилятора, испаряясь, превращается в газ.

При этом ребра патрубка становятся холодными от теплоты парообразования, и воздух внутри автомобиля становится прохладным. Кроме того, влага, содержащаяся в воздухе, от охлаждения превращается в воду и вместе с пылью по спусковому трубопроводу выбрасывается из автомобиля.

Так как при таком теплообмене между хладагентом и воздухом используются трубопровод и ребра, нужно, чтобы на контактной поверхности с воздухом не оседали вода и пыль. Образование льда и инея на испарителе происходит также и на частях ребер. При достижении теплого воздуха до ребер, охлаждаясь ниже температуры росы, на ребрах появляются водяные капли.

При этом в случае охлаждения ребер до температуры ниже О °С возникшие водяные капли либо замерзают, либо водяные пары воздуха оседают в виде инея, заметно ухудшая характеристики системы охлаждения. Поэтому для предотвращения замерзания испарителя предусматривается управление терморегулятором или компрессором с переменным напором.

Ресивер установлен между линией выпуска испарителя и компрессора. Получая от испарителя смешанный хладагент низкого давления в жидком и газообразном состоянии и масло, газообразный хладагент отправляется непосредственно к компрессору, а жидкий хладагент попадает в компрессор после испарения от нагрева окружающим теплом. Масло возвращается к компрессору через спускное отверстие. В нижней части аккумулятора находится запечатанный осушитель, который выполняет работу по удалению влаги и примесей в системе.

 

Рис. 1.10. Основные части компрессора

На рис. 1.10 представлены основные части компрессора. На рис. 1.11 приведены основные части вентилятора и конденсатора.

На рис. 1.12 даны основные части испарителя.

На рис. 1.13 и 1.14 представлен внешний вид фильтра и накопителя.

 

Рис. 1.11. Внешний вид вентилятора и конденсатора

 

Рис. 1.12. Основные части испарителя

 

Рис. 1.13. Вид на фильтр и накопитель

 

Рис. 1.14. Внешний вид на фильтр и накопитель в реальном автомобиле 1.2.7. Воздушные системы кондиционирования

При использовании воздушной системы кондиционирования получение холода обходится дороже, чем в других системах охлаждения. В значительной мере это определяется сложностью системы охлаждения, которая, в свою очередь, связана с технологическими трудностями изготовления ее агрегатов, большим числом агрегатов, их значительной стоимостью.

Особенностью кондиционеров с воздушной системой охлаждения является также необходимость больших мощностей для привода агрегатов. На рис. 1.15 представлена блок‑схема воздушной системы кондиционирования воздуха.

Атмосферный воздух засасывается в систему кондиционера компрессором (3), предварительно подвергаясь очистке от пыли в фильтре (1). Осушка воздуха производится в осушителях (2), установленных перед компрессором. Производить осушку воздуха путем конденсации или вымораживания паров воды за счет глубокого расширения в холодильнике нецелесообразно, так как это связано с увеличением габаритов последнего и мощности компрессора.

Нагретый в результате сжатия в компрессоре рабочий воздух предварительно охлаждается атмосферным воздухом в воздухо‑воздушном теплообменнике (4).

 

Рис. 1.15. Блок‑схема воздушной системы кондиционирования воздуха: 1 – фильтр; 2 – осушитель; 3 – компрессор; 4 – воздушный теплообменник;

5 – холодильник; 6 – вентилятор; 7 – клапан; 8 – кран

Более глубокое охлаждение воздуха производится в трубохолодильнике (5). Работа расширения передается вентилятору при помощи которого охлаждающий атмосферный воздух протягивается через теплообменник (4). После холодильника воздух через кран 8 поступает в объект. Кран (8) предназначен для поддержания заданного температурного режима в объекте путем смещения холодильного воздуха с горячим воздухом, подводимым по воздухопроводу через редукционный клапан (7).

Система кондиционирования современного автомобиля необходима, особенно в странах знойного лета.

Фреоновая система кондиционирования хоть и является на сегодняшний день популярной, однако относительно экологична только при заправке специальным хладагентом, к примеру R134A. Сравнительно с другими системами охлаждения, фреоновая система кондиционирования воздуха имеет высокий КПД, небольшую металлоемкость, не требуется больших мощностей на привод агрегатов, относительно невысокую стоимость.

Абсорбционная и воздушная система кондиционирования пока в автомобилях не применяется в связи с тем, что имеет большую металлоемкость, требует больших мощностей на привод компонентов, имеет небольшой КПД. Абсорбционная и воздушная системы – экологически чистые и на окружающую среду фактически не влияют, из‑за того что не применяется фреон.

На сегодняшний день фреоновые системы кондиционирования воздуха доработаны до необходимого уровня безопасности, хотя и продолжают быть опасными для окружающей среды. Внешний вид заправочной емкости с современным хладагентом R134A представлен на рис. 1.16.

Во второй главе непосредственно рассмотрим фреоновые системы кондиционирования воздуха, установленные в современных автомобилях.

 

 

Рис. 1.16. Внешний вид заправочной емкости с современным хладагентом R134A


Сайт создан на Setup.ru Создать сайт бесплатно